Consortium

<table>
<thead>
<tr>
<th>COORDINATOR(*)</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agencia Estatal Consejo Superior de Investigaciones Científicas - CSIC</td>
<td>Spain</td>
</tr>
<tr>
<td>a) Centro de Automática y Robotica</td>
<td></td>
</tr>
<tr>
<td>b) Instituto de Ciencias Agrarias</td>
<td></td>
</tr>
<tr>
<td>c) Instituto de Agricultura Sostenible</td>
<td></td>
</tr>
<tr>
<td>CogVis GmbH</td>
<td>Austria</td>
</tr>
<tr>
<td>Forschungszentrum Telekommunikation Wien Ltd.</td>
<td>Austria</td>
</tr>
<tr>
<td>Cyberbotics Ltd</td>
<td>Switzerland</td>
</tr>
<tr>
<td>Università di Pisa</td>
<td>Italy</td>
</tr>
<tr>
<td>Universidad Complutense de Madrid</td>
<td>Spain</td>
</tr>
<tr>
<td>Tropical</td>
<td>Greece</td>
</tr>
<tr>
<td>Soluciones Agrícolas de Precisión S.L.</td>
<td>Spain</td>
</tr>
<tr>
<td>Universidad Politécnica de Madrid (UPM)</td>
<td>Spain</td>
</tr>
<tr>
<td>a) ETS Ingenieros Agrónomos</td>
<td></td>
</tr>
<tr>
<td>b) ETS Ingenieros Industriales</td>
<td></td>
</tr>
<tr>
<td>AirRobot GmbH & Co. KG</td>
<td>Germany</td>
</tr>
<tr>
<td>Università degli Studi di Firenze</td>
<td>Italy</td>
</tr>
<tr>
<td>Centre National du Machinisme Agricole, du Génie Rural, des Eaux et des Forêts - CEMAGREF</td>
<td>France</td>
</tr>
<tr>
<td>Case New Holland Belgium N.V.</td>
<td>Belgium</td>
</tr>
<tr>
<td>Bluebotics S.A.</td>
<td>Switzerland</td>
</tr>
<tr>
<td>CM Srl</td>
<td>Italy</td>
</tr>
</tbody>
</table>

(*) The contact person for each beneficiary can be found in the RHEA website www.rhea-project.eu

Contract number:.............245986
European call identifier:.....FP7-NMP-2-LA-2010
Project start:...............August 1, 2010
Duration:....................48 months
Total cost:...................8.96 M €
Commission funding:........6.59 M €

RHEA: Robot Fleets for Highly Efficient Agriculture and Forestry Management
NMP2-LA-2010-245986

Contact

Pablo Gonzalez-de-Santos, Project Coordinator
Center for Automation and Robotics (UPM-CSIC)
28500 Arganda del Rey, Madrid, Spain
pablo.gonzalez@car.upm-CSIC.es

www.rhea-project.eu

RHEA is receiving funding from the European Union’s Seventh Framework Programme
RHEA goals

RHEA is a FP7 project devoted to change the traditional way of proceeding in agriculture and forestry by putting together a fleet of small, safe, reconfigurable, heterogeneous and complementary robots for weed removal and pest management in agriculture and forestry activities in order to minimize chemical product, energy and time, while maximizing the quality of products and safety, guaranteeing the application of the aforementioned procedures to the entire operation field.

System breakdown

Objectives

As specific scientific and technical objectives, RHEA will concentrate on the development of:

- **Advanced systems and algorithms for crop assessment and weed mapping based on computer vision in two modes: remote sensing – information gathered by means of aircrafts or UAVs– and ground sensing –information collected from ground robotic platforms–**
- **Innovative algorithms for decision-making modules, including behaviors such as coordination, cooperation and collaboration**
- **Enhanced actuators for precise, real-time herbicide spraying**
- **Improved end-effectors to destroy weeds based on both thermal and mechanical systems**
- **A fleet of mobile units –ground and aerial vehicles– capable of acquiring images of the task field and either applying mechanical or chemical processes for crop and weed management**
- **Robot guidance devices and algorithms based on computer vision –forward-looking view of the crop rows and obstacle avoidance–.**
- **Human-machine interfaces for monitoring/controlling autonomous outdoor vehicles.**
- **New strategies for re-planning the mission with teams of heterogeneous robots after the failure of a number of robots.**

Expected advances

Scientific and Technical advances

- RHEA will apply precision agriculture techniques by using robots and location systems for improving the accuracy of the processes

Social advances

- The application of small robots in RHEA will bring the benefit of safety with respect to the current vehicles in use
- RHEA will improve the health conditions because of the reduction of herbicide and fertilisers
- RHEA will allow both men and women to take up jobs in industry and services regardless of physical condition
- RHEA will help to increase the number of technical jobs in rural areas and thus to sustain the number of inhabitants in rural areas

Economical and ecological advances

- A group of heterogeneous robots will permit to complement different weed reduction methods to minimize both mission time and herbicide with the related economic savings
- The reduction in the emissions of chemicals has a strong direct influence on the environment
- RHEA will integrate new fuel cell and solar technology power systems into agriculture machinery and onboard equipment that will provide zero emissions
- RHEA will help to the agriculture European machinery manufacturers to keep their leading position in the world market
- RHEA will sustain the incomes in rural areas

RHEA will develop new actuation systems for both herbicide/fertilize spraying and mechanical/thermal weed removal

RHEA will allow groups of robots to be adapted to different fields in an easier way than the large traditional vehicles, thus optimizing the robot use

RHEA will afford precise algorithms to extract features from vision systems that will allow detecting and identifying weed patches more accurately

RHEA will develop Artificial Intelligence algorithms to compute the mission plan of a fleet of heterogeneous robots

RHEA will help to increase the number of technical jobs in rural areas and thus to sustain the number of inhabitants in rural areas

RHEA will improve the health conditions because of the reduction of herbicide and fertilisers

RHEA will allow both men and women to take up jobs in industry and services regardless of physical condition

RHEA will help to increase the number of technical jobs in rural areas and thus to sustain the number of inhabitants in rural areas

A group of heterogeneous robots will permit to complement different weed reduction methods to minimize both mission time and herbicide with the related economic savings

The reduction in the emissions of chemicals has a strong direct influence on the environment

RHEA will integrate new fuel cell and solar technology power systems into agriculture machinery and onboard equipment that will provide zero emissions

RHEA will help to the agriculture European machinery manufacturers to keep their leading position in the world market

RHEA will sustain the incomes in rural areas